
Evaluation of
likelihood
functions on CPU
and GPU devices
Sverre Jarp, Alfio Lazzaro, Julien Leduc,
Andrzej Nowak, Yngve Sneen Lindal
European Organization for Nuclear Research (CERN), Geneva, Switzerland

14th International Workshop on Advanced Computing and
Analysis Techniques in Physics Research,

Uxbridge, London, UK
September 5th−9th, 2011

Introduction/motivation

 Methods based on likelihood functions are used in fitting procedures to
determine whether results from HEP experiments show promises of what
is expected or not (e.g. in the RooFit package)

 In essence this means to fit a set of statistical parameters to a set of
observed data from an experiment

 Fitting can be computationally complex and often involves computation of
transcendental functions

 As accelerators become more complex and higher luminosities are
reached, the amount of collected physics events grows

 This implies that large computational resources must be used. We
therefore want to utilize parallelism in CPUs as effectively as possible, in
addition to naturally parallel co-processors such as GPUs

 Our work is based on a RooFit prototype called MLFit

Yngve Sneen Lindal (yngve.sneen.lindal@cern.ch) 2

Likelihood-based Techniques
 Data are a collection of independent events
 an event consists of the measurement of a set of

variables/observables(energies, masses, spatial and angular variables...)
recorded in a brief span of time by the physics detectors

 Introducing the concept of probability P (= Probability Density Function,
PDF) for a given event to be signal or background, we can combine this
information for all events in the likelihood function

 Several data analysis techniques requires the evaluation of L to
discriminate signal versus background events

 Finding the maximum of this function is equivalent to “what is the
parameter estimation that makes the data set most probable for the
prediction model?”

Yngve Sneen Lindal (yngve.sneen.lindal@cern.ch) 3

Maximum Likelihood Fits
 It allows to estimate free parameters over a data sample, by minimizing

the corresponding Negative Log-Likelihood (NLL) function (extended
likelihood)

 The procedure of minimization can require several evaluations of the NLL
 Depending on the complexity of the function, the number of observables, the number

of free parameters, and the number of events, the entire procedure can require long
execution time

 Mandatory to speed-up the evaluation of the NLL

Yngve Sneen Lindal (yngve.sneen.lindal@cern.ch)

s species, i.e. signals and backgrounds
nj number of events belonging to the species j

4

The model

21 PDFs in total, 3 observables, 5 species
 G: Gaussian
 A: Argus function
 P: Polynomial

Note: all PDFs have analytical normalization integral, i.e. >98% of the
sequential portion can be parallelized

Yngve Sneen Lindal (yngve.sneen.lindal@cern.ch)

~40-50% of the
execution time is

spent in exp’s
calculation

5

Model from B. Aubert et al.,
Phys. Rev. D80, 112002, 2009

OpenMP parallelization

 Instead of ”polling” the tree one value after another, do a whole range
inside

 This makes
 the number of virtual function calls independent

of N
 the code ”SIMD-friendly”, i.e. easier for compiler

to vectorize since we now have loops with computation

 Downside: have to keep one entire array
of results per PDF in memory until
final NLL value is produced

Yngve Sneen Lindal (yngve.sneen.lindal@cern.ch) 6

OpenMP parallelization

 Instead of ”polling” the tree one value after another, do a whole range
inside

 This makes
 the number of virtual function calls independent

of N
 the code ”SIMD-friendly”, i.e. easier for compiler

to vectorize since we now have loops with computation

 Downside: have to keep one entire array
of results per PDF in memory until
final NLL value is produced

Yngve Sneen Lindal (yngve.sneen.lindal@cern.ch) 7

Optimizations

 First of all, get rid of all the parallel regions (minimize overhead)

 Improves performance and reduces OpenMP code to a few lines. Not
without downsides though; harder to program/debug and makes it easier
to introduce race conditions

Yngve Sneen Lindal (yngve.sneen.lindal@cern.ch)

”Explicitly” parallel evaluation ”Implicitly” parallel evaluation

8

Further optimizations

 Tests have shown a significant memory hotspot in composite PDFs (for a
commodity Intel processor), preventing good scalability. Therefore we do
cache blocking and ”result propagation”.

 Eliminates memory hotspots and reduces mem-
ory requirements substantially (stores results
only for composite nodes)

 In addition we precalculate expressions which
are guaranteed to be constant during the evaluation (as opposed to
before)

Yngve Sneen Lindal (yngve.sneen.lindal@cern.ch)

i i+1 i+2 i+3 i+4 i+5 i+6 i+7

i i+1 i+2 i+3 i+4 i+5 i+6 i+7

9

Scalability and performance

Yngve Sneen Lindal (yngve.sneen.lindal@cern.ch)

Average numbers with 10k, 50k, 100k, 500k and 1M events. Intel C++ compiler.

Intel Core i7 965 3.2 GHz (Nehalem). 8 MB L3 cache. 4 cores supporting SMT
 ”OpenMP explicit” is ~4.5x faster than the original RooFit on a single core
 The new version is ~1.75x faster than OpenMP explicit, which makes it in average ~7.8x

faster. On top comes a scalability of ~3.6x with 4 threads and ~4.7x with 8 SMT threads. No
increase in memory footprint w.r.t. #threads.

10

Presenter
Presentation Notes
Dasd

MLFit and GPUs

Yngve Sneen Lindal (yngve.sneen.lindal@cern.ch)

 OpenCL is a standard for heterogeneous computing set by the Khronos
group (many significant industry leaders)

 Wanted to try OpenCL to target both NVIDIA and AMD GPUs
 The OpenCL idea: implicit data-parallel code executed in ”kernels”,

portable across different devices/vendors

11

Presenter
Presentation Notes
Dasd

MLFit and GPUs

Yngve Sneen Lindal (yngve.sneen.lindal@cern.ch)

 Implicitly parallel evaluation is tedious with OpenCL, since it is a 2nd
environment (in addition to the program itself). This means:

 Important to note that the CPU will now do a bit of work while walking the
tree (might act as a bound for the GPU)

12

Presenter
Presentation Notes
Dasd

GPU optimizations

Yngve Sneen Lindal (yngve.sneen.lindal@cern.ch)

 Single-precision difficult because of minimizers, code base and result
accuracy

 Added parallel reduction on the GPU. Means transferring a constant
amount of values over the bus

 Double precision means no texture cache possibilities
 Fusing the normalization loop and using constant expressions also here
 Tuning workgroup sizes to get a decent occupancy gives significant

improvements. We use a simple ”manual heuristic” for this
 All in all, a very limited case for GPU optimization
 In the results on the next slide we use two GPUs; NVIDIA GTX470 and AMD

Radeon HD5870 (+ the i7 965 CPU from the previous results)

13

Presenter
Presentation Notes
Dasd

Results

Yngve Sneen Lindal (yngve.sneen.lindal@cern.ch)

 HD5870 has theoretically 4x as much computing power as the GTX470
when doing double-precision arithmetic (but costs ~ the same)

 We have done tests with simpler test kernels which show that arithmetic
intensity must be enormous to exploit the HD’s additional performance

14

Presenter
Presentation Notes
Dasd

Hybrid implementation

Yngve Sneen Lindal (yngve.sneen.lindal@cern.ch)

 Interesting to explore how to exploit all computational devices (CPUs and
GPUs) fully, atleast in these Fusion days

 We have tested OpenCL on CPUs, and to make a long story short, it is in
our case neither performant nor elegant compared to auto-vectorizing
compilers and OpenMP

 We therefore want to use OpenMP + OpenCL in a hybrid scenario

15

Presenter
Presentation Notes
Dasd

Strategy and implementation

Yngve Sneen Lindal (yngve.sneen.lindal@cern.ch)

 Tedious to use task-based dynamic load balancing and still forcing
determinism

 A priori static balancing will most probably be highly sub-optimal
 We want to do a self-refining static balancing in the start, reach

convergence, and use that for the actual fit.
 We start with equal partitions. An updated set of partitions is based on the

execution time of each device
 i.e.

 Method partly based on Galindo et al.: Dynamic load balancing on dedicated heterogeneous systems. In Alexey L.
Lastovetsky, M. Tahar Kechadi, and Jack Dongarra, editors, PVM/MPI, volume 5205 of Lecture Notes in Computer Science, pages 64-74.
Springer, 2008.

16

Presenter
Presentation Notes
Dasd

Strategy and implementation

Yngve Sneen Lindal (yngve.sneen.lindal@cern.ch)

 But what about threading and all that?

 We spawn one thread per GPU in addition to any threads that run CPU
computation

 The tree-walking for the CPU thread responsible for GPU execution should
therefore ideally impose minimal overhead

 This effect of course diminishes as the number of cores grow (probably
more ideal to use on a 10-core processor than on a 4-core)

17

Presenter
Presentation Notes
Dasd

Results

Yngve Sneen Lindal (yngve.sneen.lindal@cern.ch)

 First of all, SMT does not contribute
anything anymore

 The potential is clearly illustrated in
this plot. Balancing is as good as perfect
when N grows high enough

 Timings of the GTX470 has been extr-
emely accurate with low deviation

18

Presenter
Presentation Notes
Dasd

Results cont.

Yngve Sneen Lindal (yngve.sneen.lindal@cern.ch)

 AMDs OpenCL implementation
incurs larger overhead and HD5870
timings have higher deviation

 We have to use 3
computational CPU threads instead
of 4 to actually gain something

 ..but the gain is almost negligible.
In other words, this is a non-ideal case

19

Presenter
Presentation Notes
Dasd

Results cont.

Yngve Sneen Lindal (yngve.sneen.lindal@cern.ch)

 Multi-GPU solution works ideal
when N grows large

 Note that GPU potential is lowe-
red when doing less work (and that
happens when we now divide)

20

Presenter
Presentation Notes
Dasd

Conclusions

Yngve Sneen Lindal (yngve.sneen.lindal@cern.ch)

 In every case, find out if you are compute-bound or memory-bound first!
 OpenMP and OpenCL can co-exist fairly well. However, CUDA can be a lot

more suitable for large C++ programs (e.g. code reuse), and can also inflict
on performance by using C++ features (templates is a good example)

 Low/negligible OpenCL API overhead and device timing accuracy is
paramount for the hybrid implementation to work good

 When that is satisfied, it is an effective data-parallel approach to exploit
e.g. Fusion APUs from AMD, when results must be guaranteed
reproduceable (very difficult, if not practically impossible with task-based
dynamic load balancing)

 Might seem obvious, but devices should perform comparably. No point in
balancing e.g. a 7:1 ratio case

21

Presenter
Presentation Notes
Dasd

	Evaluation of likelihood functions on CPU and GPU devices
	Introduction/motivation
	Likelihood-based Techniques
	Maximum Likelihood Fits
	Slide Number 5
	OpenMP parallelization
	OpenMP parallelization
	Optimizations
	Further optimizations
	Scalability and performance
	MLFit and GPUs
	MLFit and GPUs
	GPU optimizations
	Results
	Hybrid implementation
	Strategy and implementation
	Strategy and implementation
	Results
	Results cont.
	Results cont.
	Conclusions

